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Corrigendum

Cayley-type conditions for billiards within k quadrics in R
d

V Dragović and M Radnović 2004 J. Phys. A: Math. Gen. 37 1269–76

In section 4 of this paper, we misstated theorems 3 and 4. They should be reformulated as
follows.

Theorem 3. A trajectory of the billiard system constrained to the ellipsoid E within � :
β ′

1 � λ1 � β ′′
1 , . . . , β ′

d−1 � λd−1 � β ′′
d−1, with caustics Qα1 , . . . , Qαd−2 , is periodic with

exactly ns bounces at each of quadrics Qγ ′
s
, Qγ ′′

s
(1 � s � d − 2) if and only if

d−1∑

s=1

ns

(
Ā(Pγ ′

s
) − Ā(Pγ ′′

s
)
) = 0

on the Jacobian of the curve

�1 : y2 = P1(x) := −x(a1 − x) · · · (ad − x)(α1 − x) · · · (αd−2 − x).

Here Pγ ′
s
, Pγ ′′

s
are the points on �1 with coordinates Pγ ′

s
= (

γ ′
s , (−1)s

√
P1(γ ′

s )
)
, Pβ ′′

s
=(

γ ′′
s , (−1)s

√
P1(γ ′′

s )
)
, with [γ ′

s , γ
′′
s ] = { λ ∈ [β ′

s , β
′′
s ] : P1(λ) � 0 }, 1 � s � d − 2, and

Ā(P ) = (0,
∫ P

0
xdx
y

,
∫ P

0
x2dx

y
, . . . ,

∫ P

0
xd−2dx

y
).

Associate with the billiard ordered game the following divisors on the curve �1:

Ds =






Pµ′′ if is = is+1 = 1

0 if is = −is+1 = 1, βs < βs+1 or is = −is+1 = −1, βs > βs+1

Pµ′′ − Pµ′ if is = −is+1 = 1, βs > βs+1

Pµ′ − Pµ′′ if is = −is+1 = −1, βs < βs+1

Pµ′ if is = is+1 = −1,

where Pµ′ and Pµ′′ are its branching points with coordinates (µ′, 0) and (µ′′, 0), respectively.

Theorem 4. Given a billiard ordered game constrained to E within quadrics Qβ1 ,. . . , Qβk

with signature σ = (i1, . . . , ik). Its trajectory with caustics Qα1 , . . . , Qαd−2 is k-periodic if
and only if

k∑

s=1

is
(
Ā(Pβs

) − Ā(Ds)
)

is equal to a sum of several expressions of the form Ā(Pαp
) − Ā(Pαp′ ) on the Jacobian of the

curve �1 : y2 = P1(x), where Pβs
= (

βs, +
√

P1(βs)
)

and Qαp
, Qαp′ are pairs of caustics of

the same type.

Note, however, that the example given there (proposition 2) to illustrate these two theorems,
is correct.
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