Cayley-type conditions for billiards within k quadrics in d

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 387927
(http://iopscience.iop.org/0305-4470/38/36/C01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.94
The article was downloaded on 03/06/2010 at 03:57

Please note that terms and conditions apply.

Corrigendum

Cayley-type conditions for billiards within k quadrics in \mathbb{R}^{d}

V Dragović and M Radnović 2004 J. Phys. A: Math. Gen. 37 1269-76
In section 4 of this paper, we misstated theorems 3 and 4. They should be reformulated as follows.

Theorem 3. A trajectory of the billiard system constrained to the ellipsoid \mathcal{E} within Ω : $\beta_{1}^{\prime} \leqslant \lambda_{1} \leqslant \beta_{1}^{\prime \prime}, \ldots, \beta_{d-1}^{\prime} \leqslant \lambda_{d-1} \leqslant \beta_{d-1}^{\prime \prime}$, with caustics $Q_{\alpha_{1}}, \ldots, Q_{\alpha_{d-2}}$, is periodic with exactly n_{s} bounces at each of quadrics $Q_{\gamma_{s}^{\prime}}, Q_{\gamma_{s}^{\prime \prime}}(1 \leqslant s \leqslant d-2)$ if and only if

$$
\sum_{s=1}^{d-1} n_{s}\left(\overline{\mathcal{A}}\left(P_{\gamma_{s}^{\prime}}\right)-\overline{\mathcal{A}}\left(P_{\gamma_{s}^{\prime \prime}}\right)\right)=0
$$

on the Jacobian of the curve

$$
\Gamma_{1}: y^{2}=\mathcal{P}_{1}(x):=-x\left(a_{1}-x\right) \cdots\left(a_{d}-x\right)\left(\alpha_{1}-x\right) \cdots\left(\alpha_{d-2}-x\right)
$$

Here $P_{\gamma_{s}^{\prime}}, P_{\gamma_{s}^{\prime \prime}}$ are the points on Γ_{1} with coordinates $P_{\gamma_{s}^{\prime}}=\left(\gamma_{s}^{\prime},(-1)^{s} \sqrt{\mathcal{P}_{1}\left(\gamma_{s}^{\prime}\right)}\right), P_{\beta_{s}^{\prime \prime}}=$ $\left(\gamma_{s}^{\prime \prime},(-1)^{s} \sqrt{\mathcal{P}_{1}\left(\gamma_{s}^{\prime \prime}\right)}\right)$, with $\left[\gamma_{s}^{\prime}, \gamma_{s}^{\prime \prime}\right]=\left\{\lambda \in\left[\beta_{s}^{\prime}, \beta_{s}^{\prime \prime}\right]: \mathcal{P}_{1}(\lambda) \geqslant 0\right\}, 1 \leqslant s \leqslant d-2$, and $\overline{\mathcal{A}}(P)=\left(0, \int_{0}^{P} \frac{x d x}{y}, \int_{0}^{P} \frac{x^{2} d x}{y}, \ldots, \int_{0}^{P} \frac{x^{d-2} d x}{y}\right)$.

Associate with the billiard ordered game the following divisors on the curve Γ_{1} :
$\mathcal{D}_{s}= \begin{cases}P_{\mu^{\prime \prime}} & \text { if } i_{s}=i_{s+1}=1 \\ 0 & \text { if } i_{s}=-i_{s+1}=1, \beta_{s}<\beta_{s+1} \text { or } i_{s}=-i_{s+1}=-1, \beta_{s}>\beta_{s+1} \\ P_{\mu^{\prime \prime}}-P_{\mu^{\prime}} & \text { if } i_{s}=-i_{s+1}=1, \beta_{s}>\beta_{s+1} \\ P_{\mu^{\prime}}-P_{\mu^{\prime \prime}} & \text { if } i_{s}=-i_{s+1}=-1, \beta_{s}<\beta_{s+1} \\ P_{\mu^{\prime}} & \text { if } i_{s}=i_{s+1}=-1,\end{cases}$
where $P_{\mu^{\prime}}$ and $P_{\mu^{\prime \prime}}$ are its branching points with coordinates ($\mu^{\prime}, 0$) and ($\mu^{\prime \prime}, 0$), respectively.
Theorem 4. Given a billiard ordered game constrained to \mathcal{E} within quadrics $Q_{\beta_{1}, \ldots,} Q_{\beta_{k}}$ with signature $\sigma=\left(i_{1}, \ldots, i_{k}\right)$. Its trajectory with caustics $Q_{\alpha_{1}}, \ldots, Q_{\alpha_{d-2}}$ is k-periodic if and only if

$$
\sum_{s=1}^{k} i_{s}\left(\overline{\mathcal{A}}\left(P_{\beta_{s}}\right)-\overline{\mathcal{A}}\left(\mathcal{D}_{s}\right)\right)
$$

is equal to a sum of several expressions of the form $\overline{\mathcal{A}}\left(P_{\alpha_{p}}\right)-\overline{\mathcal{A}}\left(P_{\alpha_{p^{\prime}}}\right)$ on the Jacobian of the curve $\Gamma_{1}: y^{2}=\mathcal{P}_{1}(x)$, where $P_{\beta_{s}}=\left(\beta_{s},+\sqrt{\mathcal{P}_{1}\left(\beta_{s}\right)}\right)$ and $Q_{\alpha_{p}}, Q_{\alpha_{p^{\prime}}}$ are pairs of caustics of the same type.

Note, however, that the example given there (proposition 2) to illustrate these two theorems, is correct.
doi:10.1088/0305-4470/38/36/C01

